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I I, 

1. SUMHAKY 

The purpose of the Advanced Figure  Sensor   project  was t o   i n v e s t i g a t e  key 

e lements   in  an op t i ca l   f i gu re   s enso r   su i t ab le   fo r   even tua l   u se  i n  a spaceborne 

ac t ive   op t i c s   t e l e scope .  The s p e c i f i c   o b j e c t i v e s  were to  develop: 1) a s o l i d  

s ta te  op t i ca l   f r equency   sh i f t e r ,  2) a technique  for  measuring a pa rabo l i c  

primary  mirror,  and 3) a concept  for  measuring  the  alignment of the  secondary 

mirror .  The b a s i c   f i g u r e   s e n s o r  employs an interference  phase  measuring in-  
terferometer  combined w i t h   e l e c t r o n i c   c i r c u i t s   f o r  making  measurements i n  real 

time. 

Two approaches were inves t iga ted   for   the   f requency   sh i f te r :  

(1) Doppler   f requency  shif t  by mechanical   t ranslat ion of a r e f e r -  

ence   re f   l ec tor  

(2) Rotating  1/4 A pla te  i n  c i r c u l a r l y   p o l a r i z e d   l i g h t ,  where 

r o t a t i n g   b i r e f r i n g e n c e   e f f e c t  i s  produced by a r o t a t i n g  

shear  stress wave i n  an electro-acoustical-optical device.  

The Doppler  approach was select.ed  because of i t s  s i m p l i c i t y  and ease 'of mmu- 

f a c t u r e .  The breadboard  uni t   consis ted of a re ference   mir ror  mounted i n  a 

p i e z o e l e c t r i c   c y l i n d e r .  A t r i a n g u l a r  waveform e l e c t r o n i c   d r i v e   g e n e r a t e s  a 

cycl ic   displacement  of 4 A per  excursion a t  a ra te   tha t   p roduces  an o p t i c a l  

f r equency   sh i f t  of f 500 Hz. 

Three  approaches were investigated  for  the  aspheric  measurement  technique: 

An aspher ic   re fe rence   re f lec tor   tha t   genera tes   wavef ront   d i s -  

t o r t i ons   i den t i ca l   t o   t he   op t i ca l   pa th   d i f f e rence   be tween  

the  parabola and a reference sphere. 

A n u l l   c o r r e c t o r   t h a t   g e n e r a t e s   s p h e r i c a l   a b e r r a t i o n s   t h a t  

are exac t ly   compl imentary   to   the   spher ica l   aber ra t ions  of a 

parabola when viewed  from i ts  paraxial c e n t e r  of curvature .  

Analysis of the  moire '   pattern  result ing  from  the supar- 

p o s i t i o n  of a real and a c a l c u l a t e d   f r i n g e   p a t t e r n   r e s u l t -  

ing  fram  the  optical   path  difference  between  the  parabola 

and a sphe r i ca l   r e f e rence   r e f l ec to r .  

1 



The  moird pat tern  approach was se lec ted   because  i t  o f f e r e d   g r e a t e r   f l e x i b i l i t y ,  

and  fewer opt ica l   e lements   tha t   might   in t roduce   f igure   e r rors ,   and   the   ca lcu-  

l a t e d   f r i n g e   p a t t e r n  i s  r e l a t i v e l y  s imple '  to  manufacture. A r e fe rence   pa t t e rn  

was designed  and made t o  measure  an  8-inch f / l  parabola.  Tests showed tha t   t he  

technique  can  be  used  with  the  phase  measuring  interferometer  with  no  added 

complexity.   Tests  with a good f / l ,   8 - inch   parabola  showed that   the   technique 

i s  p rac t i ca l ,   bu t  more c a l c u l a t i o n s  must  be  performed t o  make a p e r f e c t   r e f e r -  

ence p a t t e r n .  

An opt ical   arrangement  was invest igated  for   measuring  the  secondary  a l ign-  

ment with  the  pr imary  mirror   f igure  sensor .   Calculat ions  indicate   that  t ilt  

alignment can be  measured  with  the  required  accuracy.  Axial  alignment nus t be 

monitored a t  the  instrument   focal   p lane.  

A recomended  optical  arrangement  and  block  diagram  has  been  developed  for 

a working  model f igure   sensor   tha t   uses   the   Doppler   f requency   sh i f te r  and  moire' 

p a t t e r n   a n a l y s i s .  

2 



2. INTRCDUCTION 

2.1 Objectives 

The concept of Act ive  Optics   for   large  as t ronomical   te lescopes  consis ts  

o f .measu r ing   t he   op t i ca l   f i gu re  of  the  primary  mirror;  computing  any  errors; 

and au tomat ica l ly   rea l ign ing   the   mir ror   to  i t s  o r i g i n a l   d e s i g n   f i g u r e ,   e i t h e r  

by pos i t ion ing   p ieces  of a segmented  mirror  or by f l ex ing  a r e l a t i v e l y   t h i n  

mirror  (Refs.  1,2).  (See  Figure 1.) A v a r i e t y  of o p t i c a l  test devices  have 

been   eva lua ted   for   the   f igure   sens ing;  however, i n t e r f e r o m e t r i c  measurements 

are the  only  ones  that   produce.   quant i ta t ive  data   with the required  accuracy 

and short   response  t ime  required  for   an  automatic   control   system. 

I n  the   ac t ive   op t i c s   app l i ca t ion ,  one beam of a Twyman-Green interferom- 

eter is  r e f l e c t e d  from a p lane   re ference   re f lec tor ;   the   second beam i s  con- 

ve r t ed  by a lens  to a diverging  spherical   wavefront.   (See  Figure 2 . )  The 

f igu re   s enso r  i s  located so that   the  diverging  wavefront i s  concentric  about 

the   cen ter  of curvature  of the  mirror  under tes t .  I f   the   mir ror   has  a sphe r i -  

cal  su r face  and i s  al igned so t h a t  i t s  cen te r  of curvature  i s  located a t  the 

cen te r  of divergence of the  wavefront ,   the   l ight  w i l l  be   ref lected  back  exact ly  

upon i t s  inc iden t   pa th .  It w i l l  then  pass  back  through the lens  and again 

become a plane  wavefront.  Thus,  for a perfect sphe r i ca l   n i i r ro r ,   i n t e r f e rence  

takes   place a t  the  beamsplitter  between two coplanar  wavefronts. When there  

are s u r f a c e   i r r e g u l a r i t i e s  on the  mirror  under test, or  when i t  is misaligned, 

the  re turn  wavefront  w i l l  no t  be coplanar   with  the  reference  wavefront   a t   the  

po in t  of in te r fe rence .   For  tilt misalignment,  the  interference  wavefronts 

w i l l  be  approximately p l ane  but   no t   para l le l ,   p roducing  a f r inge   pa t te rn   con-  

s i s t i n g  of s t ra ight   l ines .   For   ax ia l   misa l ignment ,   in te r fe rence  w i l l  take 

place  between a p l a n e  wavefront and a s l igh t ly   spher ica l   wavef ront .   This   p ro-  

duces a c i r c u l a r   f r i n g e  pa t te rn .  Smal l   loca l ized   f igure   e r rors   p roduce   loca l -  

i z e d   p h a s e   s h i f t s   i n   t h e   f r i n g e  pattern. 

I n  a prac t ica l   t e lescope ,   the   p r imary   mir ror  w i l l  not  have a s p h e r i c a l  

f igure ,   bu t  w i l l  probably  be  c lose  to  a parabola.   Therefore,   techniques  are 

required to  adapt   the  f igure  sensor   to   aspheric   mirror   measurements .  
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The f i g u r e  of  the  primary  mirror  in a spaceborne  telescope  must  be  main- 

ta ined   wi th   an   accuracy   tha t  w i l l  provide  diffract ion-l imited  performance.  

This m e a n s  t ha t   t he   f i gu re   s enso r  must be a b l e   t o   d e t e c t   n o t   j u s t   i n t e r f e r e n c e  

f r i n g e s   b u t   e r r o r s   t h a t   r e s u l t  i n  only   smal l   f rac t ions  of a f r i n g e .  The con- 

c e p t  of e l ec t ron ic   op t i ca l   phase  measurement was developed  to   provide  this  

accuracy.  This  concept  has  been  described i n   d e t a i l  by  a  number of previous 

publ icat ions  (Refs  3,4,5,6) and w i l l  be descr ibed   on ly   b r ie f ly   here .  

The electronic   phase  measuring  interferometer  i s  a two-beam interferome- 

ter i n  which opt ical   wavefront   phase i s  conve r t ed   t o   an   e l ec t ron ic   ca r r i e r  

phase  and i s  then   e lec t ronica l ly   ana lyzed .   This  makes i t  poss ib l e   t o   s ense  

f i g u r e   e r r o r s   i n   r e a l   t i m e .   F i g t r e  3 i s  a schematic of a s impl i f i ed   ve r s ion  

of the  phase  measuring  interferometer   with  coherent   i l luminat ion and wi th  

p l ane   r e f l ec t ing   su r f aces   i n   each   i n t e r f e rence  beam. I f   b o t h   r e f l e c t o r s   a r e  

pe r fec t ly   p l ane  and pa ra l l e l   t o   t he   wave f ron t ,   i n t e r f e rence  w i l l  occur  between 

two plane parallel  wavefronts  producing a l i gh t   pa t t e rn   w i th   un i fo rm  in t ens i ty  

over i t s  e n t i r e t y .   I f   t h e   r e f e r e n c e   r e f l e c t o r  i s  t r a n s l a t e d   a t   c o n s t a n t   v e l o c -  

i t y  a long  the  opt ical   axis   normal   to   the  wavefront ,   then  the  l ight   pat tern 

i n t e n s i t y  w i l l  vary  through maximum and minimum l e v e l s   i n  a s inuso ida l   f a sh ion  

wi th   i den t i ca l   phase   ove r   t he   en t i r e   pa t t e rn .  Two de tec to r s   a r e   p l aced   i n   t he  

output  plane: one a t  a p o s i t i o n   a r b i t r a r i l y   s e l e c t e d   a s  a reference,  and  one 

a t  a spot   corresponding  to  a spot  of unknown f i g u r e  on t h e   t e s t - s u r f a c e .  These 

conver t   the   cyc l ing   l igh t   pa t te rn   in to  two cyc l ing   e lec t ronic   vo l tages   o r   car -  

r i e r s .   I f  a small po r t ion  of t h e   t e s t   s u r f a c e  i s  high i n   r e l a t i o n   t o   t h e   r e s t  

of  ' the  surface,   there w i l l  be a r e l a t i v e  phase s h i f t  of t h e   e l e c t r o n i c   s i g n a l  

genera ted   f rom  the   cor responding   po in t   in   the   l igh t   pa t te rn .  

I n  a pract ical   implementat ion of t h i s   concep t ,   l i nea r   t r ans l a t ion  of the 

r e f e r e n c e   r e f l e c t o r  i s  regarded as causing a continuously  increasing  phase 

s h i f t   i n   t h e   r e f e r e n c e  beam. Continuous  increase  in  phase of  a c a r r i e r  i s  the 

same as a f ixed  change in   f requency .  Thus,  an op t i ca l   f r equency   sh i f t e r  is 

required  for   the  e lectronic   phase  measuring  interferometer .  
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Therefore ,   the   p r imary   ob jec t ives   o f   th i s   p ro jec t  were to: 

(1) Design,   fabr icate ,  test, and eva lua te  two d i f f e r e n t   s o l i d -  

state f r e q u e n c y   s h i f t e r s   f o r  use i n  a phase  measuring 

in t e r f e romete r .  

(2) Design,   fabr icatg,  test, and eva lua te   the   necessary   op t ics  

to   render   the  Twyman-Green in te r fe rometer   capable  of meas- 

uring  an  8-inch-diameter, f / l   p a r a b o l a .  

A secondary  object ive was to :  

(3) Study  the  problem  of  primary-to-secondary  alignment i n  a 

space   t e lescope   wi th   regard   to   the   poss ib i l i ty  of using 

the  primary-mirror  figure  sensor  to  measure  secondary 

al ignment   a lso.  

2 . 2  Conclusions 

A sumnary of the work completed i s  presented   in   F igures  4 through  10. 

A Doppler   f requency  shif ter  was selected  because i t  is simple  and was 

shown t o  work successfu l ly .   F igure  4 shows the  mechanical  assembly,  consist- 

ing of a r e f e r e n c e   r e f l e c t o r  mounted i n  a p i e z o e l e c t r i c   c y l i n d e r .  When v o l t -  

age i s  applied  between  the  inner and ou te r  walls, a p i e z o e l e c t r i c . e f f e c t   c a u s e s  

the   cy l inder   l ength  to  change, i n   t u r n   c a u s i n g   t h e   r e f l e c t o r   t o   t r a n s l a t e   i n  an 

axial d i rec t ion .   F igure  5 shows how th i s   dev ice  i s  u s e d   i n  a T q m a - G r e e n   i n t e r -  

ferometer.  A c y c l i c   l i n e a r   d r i v e   v o l t a g e  i s  app l i ed   t o   t he   cy l inde r .   Th i s  

produces a s i n e  wave v a r i a t i o n  o f   t he   i n t e r f e rence   l i gh t   pa t t e rn ,  which i n  

turn  produces two s i n e  wave c a r r i e r   s i g n a l s .  The d i s c o n t i n u i t i e s   i n   t h e   o u t -  

pu t  waveforms  shown in   F igu re  5 occur when the   d r ive   vo l t age   r eve r ses   d i r ec t ion .  

The frequency of the  output carrier is  equa l   t o   t he   f r equency   sh i f t  of  the 

o p t i c a l  beam in   t he   r e f e rence  arm. 

The problem  involved i n  the  nreasurement of an a s p h e r i c   r e f l e c t o r ,  i .e ., 
an   aspher ic   sur face  i s  not   equid is tan t   f rom i t s  nominal  center  of  curvature, 

i s  shown i n  Figure 6.  This   f igure  shows the difference  between a parabola and 

a circle of the same paraxial radius  when viewed  from t h e i r  nominal canters of 

curvature .  The ''A path   d i f fe rence"  of up t o  100 wavelengths m e t  be accomo- 

dated i n  the   f igure   sensor .  The se l ec t ed   so lu t ion   u ses  a moire   analysis  i n  

8 
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which  the  f r inge pattern genera ted  by the   ac tua l  ''A p a t h   d i f f e r e n c e "   i e   c o r r e -  

l a t ed   w i th  a reference  pa' t tern  which i s  computed on t he   bas i s  of a p e r f e c t  

optical   element  under tes t .  Figure 7 shows how the   co r re l a t ion   p roduc t  i s  

obta ined .   For   s impl ic i ty ,   p lane   re f lec tors  were used i n  prepar ing   th i s   f igure .  

Figure 8  shows a c a l c u l a t e d  and  measured f r i n g e   p a t t e r n   f o r  an 8-inch f / l  

parabola.   Figure 8(c) shows  a  moire' pa t te rn   ob ta ined  by c o r r e l a t i n g  (a) and 

(b) .  The r e s i d u a l   f r i n g e   p a t t e r n  i s  due t o   t h e   f a c t   t h a t   g e o m e t r i c   d i s t o r t i o n  

i n  a f i e l d   l e n s  was neglected  in   the  computat ion.  It was shown by laboratory 

demonstrat ion  that  a moire' pattern  can  be  used  with  the  electronic  phase meas- 

uring  technique.  Thus, a compl ica ted   aspher ic   re f lec t ing   sur face   can  be  meas- 

ured by a r ea l - t ime   f i gu re   s enso r .  

Figure 9 shows the   op t i ca l   po r t ions  of  the  breadboard  f igure  sensor se t  

up t o  tes t  the  8-inch  parabola.   Figure 10 shows the recommended o p t i c a l   a r -  

rangement f o r  a "working  model" of t h i s   t ype  of f igu re   s enso r .  
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Figure  8. F r inge   Pa t t e rns  

Reference  Fr inge  pat tern 
made from t h e   c a l c u l a t e d  
difference  between a sphere 
and a parabola.  

Actua l   Fr inge   pa t te rn  
measured from t h e   d i f f e r -  
ence  between  an f / l  
parabola  and a re ference  
sphe r i ca l   mi r ro r .  (d) 

Moire/ pa t te rn   ob ta ined  
from mul t ip l i ca t ion   o f  
ac tua l   pa t t e rn   and  
ca l cu la t ed   pa t t e rn .  

Moire/ pa t t e rn  similar t o  
(c)  above,  but  with  the 
r e f e r e n c e   r e f l e c t o r   t i l t e d  
s l i g h t l y .  
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3. FREQUENCY SHIFTER 

Two approaches   were   inves t iga ted   for   the   so l id-s ta te   f requency   sh i f te r :  

(1) Doppler   f requency  shif t  by axial t r a n s l a t i o n  of  a reference 

r e f   l e c t o r .  

(2)  Rotating  1/4 A p l a t e   i n   c i r c u l a r l y   p o l a r i z e d   l i g h t ,  where 

r o t a t i n g   1 / 4  A e f f e c t  is produced by a rotat ing.compression 

s t r e s s  wave i n  an electro-acoustic-optical device.  

The Doppler  approach was selected  because i t  i s  s imple  and was  demon- 

s t r a t e d   t o  work w e l l .  

3.1  Doppler  Frequency  Shifter 

The Doppler   f requency   sh i f te r   opera tes   in   the   re fe rence  arm of t h e   i n t e r -  

ferometer  as shown p rev ious ly   i n   F igu re  5. The frequency of t he   op t i ca l  beam 

i s  s h i f t e d  by  moving the   re fe rence   mir ror   in  a d i r e c t i o n   p a r a l l e l   t o   t h e   o p t i -  

c a l  axis. Motion  towards  the  beamsplit ter  increases  frequency, and  motion 

away decreases  frequency  according  to 

Af = 2 - cos8 U 

Fc 
Where : 

A f  = f r equency   sh i f t   ( s ec - l )  

u = mir ro r   ve loc i ty  (mm sec-’) 

A = optical   wavelength (m) 

8 I angle of inc idence   re la t ive   to   the   ve loc i ty   vec tor   (deg)  

Reasonably l i n e a r  motion i s  required so  t h a t   t h e   e l e c t r o n i c   c a r r i e r   f r e -  

quency w i l l  be  constant.  The motion  must a l s o  be b id i rec t iona l .   Therefore ,  

a t r i a n g u l a r  waveform was se lec ted   for   the   pos i t ion-versus- t ime  func t ion .  A 

t o t a l   excur s ion   g rea t e r   t han  1 wavelength i s  needed so  t h a t   s e v e r a l   c y c l e s  of 

carrier frequency w i l l  be generated.   This is necessa ry   fo r   t he   e l ec t ron ic  

de tec tor   to   opera te   p roper ly .  The present   des ign  is based upon 7 1/2 wave- 

lengths  p e r  cycle  of mirror  motion. 

The mirror   surface  should be  maintained  c lose  to   normal   to   the  opt ical  

axis for a l l  posit ions.   Approximately h/20 of tilt across   the  i l luminated 

17 



por t ion  of the   re fe rence   mir ror   dur ing   the  aweep w i l l  reduce  the  l inear  range 

of the  sensor  from f h/4  t o  f h/4.5. Thie   e f f ec t  is  explained i n  paragraph 

3.2. In   addi t ion,   the   Doppler   f requency  shif ter   must   use   no  mechanical ly  

r o t a t i n g  parts o r   f r i c t i o n   i n t e r f a c e s ,  and mst be s t a b l e   f o r  long  periods 

of time. Also  very l i t t l e  power should   be   d i ss ipa ted   in   the   device   o r  be 

r equ i r ed   t o   d r ive  it. 

C h a r a c t e r i s t i c s  of a breadboard   f requency   sh i f te r   a re   l i s ted   in   Table  I. 

F o r   t h i s  model, a p iezoe lec t r ic   e lec t ro-mechanica l   t ransducer  was s e l e c t e d  

because it i s  s i m p l e ,  r equ i r e s  no mechanical moving p a r t s ,  and i s  mechanically 

rugged,  and  the  required  excursions  can  be  obtained  with  reasonable  drive  volt- 

ages.   Previous  experience  with  actuators  has shown t h a t   t h e  most d e s i r a b l e  

t ransducer   conf igura t ion  i s  one i n  which a l l  forces   resu l t   in   on ly   compress ion  

or   t ens ion   s t resses ,   wi th  no  bending stress. Two transducer  shapes were con- 

s ide red ;  a s t ack  of th in   wafers  and a t h i n  wall cy l inde r .  The cy l inde r  was 

se lec ted   because   the   ax ia l  symmetry causes  only  compression stress and  does 

not   cause  bending  s t ress  in the   mir ror   o r   in   the   suppor t ing  mount. A t h i n  

wal l  i s  desirable   because i t  g ives   g rea te r   ax ia l   expans ion   for  a given  appl ied 

voltage  than a th i ck   wa l l .   E lec t rodes   a r e   p l a t ed  on the  inner  and outer   wal ls  

of t he   cy l inde r  s o  t h a t   t h e   e l e c t r i c a l   p o t e n t i a l  i s  appl ied  across   the  wal l  

thickness .  It  was found t h a t  commercial   grade  piezoelectric  material  w a s  no t  

s u f f i c i e n t l y  homogeneous. Therefore   port ions of the  inner   wal l   e lectrode  were 

i so l a t ed   t o   a l l ow  use  of compensating d i f f e r e n t i a l   v o l t a g e s .   I n   t h i s  way, a l l  

s i d e s  of the  cylinder  should  expand by the same  amount, to   g ive   pure   ax ia l  

t rans la t ion   wi thout   mir ror  tilt. This  compensation scheme helped  but  did  not 

work as w e l l  as was hoped. The p i e z o e l e c t r i c   c y l i n d e r s  made from PZT-5 mate- 

r i a l  were purchased  from  Clevite. 

The p i e z o e l e c t r i c   m a t e r i a l  i s  q u i t e   s t i f f ,   h a v i n g  a Young's  modulus com- 

p a r a b l e   t o   t h a t  of g l a s s .  It was therefore   necessary   to   f ind  a mounting a r -  

rangement t h a t  would hold  the  mirror   t ight ly   within  the  end of the   cy l inder  

bu t  would not   a l low  cyl inder   exercis ing  to   squeeze  the  mirror .  A eimple 

Teflon  cushion  between  the  piezoelectric  element and the  mirror  was found t o  

work qu i t e   s a t i s f ac to r i ly .   Te f lon   has  a Young's  Modulus approximately  10 

times sma l l e r   t han   t ha t  of e i the r   t he   t r ansduce r   o r   t he   mi r ro r .  The cushion 

has a t i g h t  f i t  around  the  mirror  circumference and i s  held  within  the  end of 
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TABLE I 

D.OPPLER FREQUENCY SHIFTER CHARACTERISTICS 

Frequency Sh i f t  f 500 H z  

Axial  Displacement  of Mirror f 2h peak 

Displacement Waveform Triangular a t  33-1/2 Hz 

Clear  Aperture 15 m dia.  

Mirror T i l t  < h/20 peak to peak 

Figure  Error < h/lOO peak 

Internal  Dissipation 1/4  watt 
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the   t ransducer  by a spr ing and slot   arrangement.   (See  Figure 11.) The t r a n s -  

ducer i s  he ld  i n  a mounting  block  by a set of Teflon-tipped setscrews. Cal- 

c u l a t i o n s  showed that the  compressive  forces  conducted  through  the  Teflon 

would  cause less than   h j500   sphe r i ca l   abe r ra t ion   i n   t he   mi r ro r .  

The e l ec t ron ic   c i r cu i t   r equ i r ed   t o   d r ive   t he   t r ansduce r  i s  r e l a t i v e l y  

simple. Choice  of  frequency i s  bounded a t  low frequencies  by the  need  to 

generate  a ca r r i e r   f r equency   g rea t e r   t han  120 Hz to   avo id   i n t e r f e rence  from 

the   f i r s t   ha rmon ic  of the power l ine  frequency, and a t  high  f requencies  by the 

f a c t   t h a t . t h e   p i e z o e l e c t r i c   e l e m e n t   p r e s e n t s  a high  capaci ty   load.  The se-  

lected  cyl inders   have a capac i ty  of 0.018 VF. A drive  f requency of 33-113 Hz 

was se l ec t ed   w i th  a  sweep  magnitude to  produce 7-112 cycles   per   excursion  or  

15  cycles   per   dr ive  per iod.   This   generates  a s i g n a l   c a r r i e r   f r e q u e n c y  of 500 

Hz. A t r iangular   motion waveform i s  preferred  over  a saw-tooth waveform be- 

cause of h y s t e r e t i c   e f f e c t s   i n   t h e  PZT-5 mater ia l .   F igure  1 2  shows a block 

diagram of the   h igh   vo l tage   d r ive   c i rcu i t   used   for   the   b readboard   t es t s .  

3.2 Electronic   Phase  Detector  

Two e l ec t ron ic   s igna l s   a r e   p roduced  by two photodiodes  placed  in   the  inter-  

ferometer   output   f r inge  plane.   Electronic   c i rcui ts   are   needed  to   detect   the  

r e l a t i v e  phase of these two c a r r i e r s .  

A new c i r c u i t  was designed and used i n  the  breadboard tests t o   g i v e  a 

l inear   range of f 180 degrees, compared t o  f 90-degree  l inear  range  for  pre- 

v i o u s   c i r c u i t s  . 
The c i r cu i t   s chemat i c  i s  shown in   F igure   13 .  The s i g n a l  and reference 

c a r r i e r s  f rom  photodetectors   are   fed  to  a p a i r  of l imi t e r s   t o   r e j ec t   ampl i tude  

noise .  A bridged  Zener  diode in   the  feedback  loop of the   opera t iona l  ampli-  

f i e r  produces  hard  l imiting and sha rp   ax i s - c ros s ing   t r ans i t i ons .  The r e f e r -  

ence   ca r r i e r  i s  inve r t ed ,   i . e . ,   sh i f t ed   i n   phase  by 180 degrees ,   r e l a t ive   t o  

t h e   s i g n a l   c a r r i e r .  Both  waveforms are fur ther   sharpened by a pa i r  of d i f -  

fe ren t ia t ing   ne tworks  so t h a t  a sho r t   pu l se  i s  produced fo r   each   ax i s   c ros s ing .  

The negat ive-going  pulses   t r igger  a b i n a r y   f l i p - f l o p .  The output of t h e   f l i p -  

f lop  can be considered as a posi t ive  gate   with  duty  cycle   proport ional   to   phase 

d i f f e rence  between  the  signal and re ference   car r ie rs .   This   var iab le   wid th  
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ga te   t hen   con t ro l s  two t r a n s i s t o r   s w i t c h e s   t h a t   f e e d   p l u s  and  minus r e fe rence  

vol tages  t o  a summing and i n t e g r a t i n g   a m p l i f i e r .  

The measured  re la t ionship  between  phase  difference and output   dc  vol tage 

is very l inear   over   phase  angles  of f 180  degrees as shown i n  Figure  14. 

Changes i n  output   wi th   10-percent   var ia t ion  of  power supply  voltages  were un- 

d e t e c t a b l e .   I n p u t   c a r r i e r   v o l t a g e s   g r e a t e r   t h a n  100 mv rms cause  no  change 

i n   t h e   o u t p u t .   S i m i l a r l y ,   t h i s   c i r c u i t  i s  independent of i n p u t   c a r r i e r   f r e -  

quency in  the  range  from  10 Hz t o  2 kHz. 

When th i s   phase   de t ec to r  i s  appl ied   to   the   f igure   sensor ,  i t  i s  necessary 

t o  know  how the   ca l ib ra t ion   cu rve  w i l l  be   a f fec ted  by the  imperfections of the 

actual   s ignals   to   be  handled.   These  imperfect ions w i l l  include  noise ,   spurious 

s igna ls ,   changes   in   car r ie r   l eve l ,   changes   in   car r ie r   f requency ,  and frequency 

modulation  .of one c a r r i e r   r e l a t i v e   t o   t h e   o t h e r  due t o   m i r r o r  tilt i n   t h e  

Doppler   f requency  shif ter .  

Amplitude  changes  and  amplitude  noise w i l l  n o t  pass through  the  hard 

limiters. Changes i n  frequency of both  carr iers   between 10 Hz and 2 kHz have 

been shown to  have  no  effect .   Relative  frequency  modulation and phase  noise 

w i l l  cause  degradation. The predominant  effect   for  small   changes w i l l  be a 

loss in   l inear   range ,   wi th   no   e f fec t  on accuracy .   I f   the   Doppler   sh i f te r  i s  

ad jus t ed   fo r  f 2). dev ia t ion ,   i . e .  , 8 cycles  of car r ie r   per   devia t ion   excurs ion ,  

the  equat ion  for   the  phase  detector   output  is:  

"dc 
- Edc 
1440 n=+(1,2,3,4) 

when -180 ( ] < +I80 

o r  

o r  
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Figure 14. 
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Demodulator 



Where : 

Ed c 

e = phase   e r ro r   due   t o   f i gu re   e r ro r   (deg )  

= maximum dc   vo l t age  

y = random phase  modulation  due  to  carrier  frequency  modulation 

o r   no i se   o r   mi r ro r  t ilt  (deg  peak) 

Th i s , equa t ion  is  p lo t t ed   i n   F igu re   15   fo r   one   po la r i ty   o f   f i gu re   e r ro r  

only. 

When the   phase   de t ec to r   c i r cu i t  i s  used  with  the  Doppler  frequency 

s h i f t e r ,   t h r e e   f e a t u r e s  must  be  added t o  accommodate the   fo l lowing   f ac to r s :  

(1)  For a f ixed   f i gu re   e r ro r ,   t he   ca r r i e r   phase   e r ro r   changes  

polar i ty   each  time the  Doppler  frequency  shift   changes 

p o l a r i t y .  To compensate fo r   t h i s ,   t he   ou tpu t   dc   po la r i ty  

i s  reversed  in   synchronism  with  the  dr iver  sweep. 

(2) The p i e z o e l e c t r i c  material h a s   s i g n i f i c a n t   h y s t e r e s i s ;  i .e.,  

the  mechanical sweep lags   behind   the   appl ied   d r ive   vo l tage .  

T h i s   e f f e c t  i s  accommodated by blanking  off   the   phase  detec-  

t o r   f o r  3 milliseconds  following  each sweep r eve r sa l .  

( 3 )  For   ce r t a in   cond i t ions ,   t he   s igna l   and   r e fe rence   ca r r i e r s  

may contain a d i f f e r e n t  number of  axis-crossings,   causing 

ambiguous output   vol tage.   This  i s  co r rec t ed  by an  "and" 

gate   synchronized  with  the sweep r e v e r s a l s .  

The phase   de tec tor   c i rcu i t   wi th   these   addi t ions  i s  shown in   b lock  form i n  

Figure  16,  Typical waveforms throughout   the   e lec t ronics  are shown in   F igure   17 .  

L e t t e r s   i n   F i g u r e  16 i d e n t i f y   l o c a t i o n s  a t  which t h e s e  waveforms are  found. 

Overall performance  of  the  f igure  sensor  using a Doppler  frequency  shifter 

i s  shown i n   F i g u r e  18. This i s  a recording  of   the  output  DC vo l t age  as  a func- 

t i o n  of d i f f e ren t i a l   op t i ca l   pa th   d i f f e rence   i n   one   ha l f   o f   one  beam o f   t he  

interferometer .  The recording was obtained by p l ac ing  a th in   p i ece   o f  mica 

i n  one  half  of  one beam.  The mica was then  rotated  about   an  axis   perpendicu-  

l a r  t o  t h e  beam. This  produced a slowly  changing OPD i n   t h a t   p o r t i o n   o f   t h e  

beam. A reference  detector   monitored  the  undis turbed  port ion  of   the beam and 
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(a) Top: Frequency Shifter  Drive  (Point "a") (b)  Top: Signal  Carrier  (Point "c") with  large 
Bottom: Preamplifier  Carrier  Output  (Point "b") f i gu re   e r ro r  of approx. X / 4  

Bottom: Reference  Carrier  (Point 'Id'') 

(c) Top: Limiter Output  (Point "e") 
Bottom: Signal  Carrier  (Point "c") 

(d)  Top: Multivibrator  Output  (Point 'If'') with 
la rge   f igure   e r ror  

Bottom: Signal Carrier (Point "c") 

Figure 17 .  Electronic Waveforms (See Figure 16 for  Point  Locations) 
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the   second  detector   monitored  the  dis turbed  port ion,  An overal l   response 

bandwidth  of 5 hz was used. 

3 . 3  Rotating 114 Wave Plate 

The second  approach  to  building an op t i ca l   f r equency   sh i f t e r  i s  one i n  

which a combination of f i x e d  and r o t a t i n g  114 X p l a t e s  are placed i n  t h e   r e f e r -  

ence beam.  The beam passes  through  these  elements twice t o  produce 360 degrees 

of de lay   for   every  180 degrees of r o t a t i o n  of t he   ro t a t ing  114 k Platem  Opera- 

t i o n  of this   device  can  best   be   understood  by  consider ing a vector  diagram of 

the wave t r a i n  as i t  passes  through  the  elements  for one p a r t i c u l a r   o r i e n t a -  

t i o n  of t he   ro t a t ing  'L/4 h p la t e .  L e t  the   input  wave be  represented by a vec to r  

1 which  can  be  resolved  into  orthogonal  components and passed  through 

a 1/4 '.. p l a t 9  or ien ted   wi th  i t s  o p t i c a l  axis p a r a l l e l   t o  one of the  components 

/ . A t  the  output of the  114 A plate, t h e  component i n   p a r a l l e l   w i t h   t h e  / 

/ 

o p t i c a l  axis i s  delayed 90 degrees   re la t ive  to   the  perpendicular   component .  

This may be represented by 'v9' where the   numera ls   re fe r   to   re la t ive  

phase  re tardat ion of the marked vec to r .  These vectors   can  again be resolved 

i n t o   p l u s  cg0 and passed  through a second  1/4 h p l a t e   o r i e n t e d  

v e r t i c a l l y  I producing A" plus ' cq0 . The  wave t r a i n  i s  

now r e f l e c t e d  from a f ixed   r e f l ec to r ,   r eve r s ing   a l l   vec to r s  by 180 degrees and 

I 

I 0 

producing 90 To plus '"7 The vec tors   a re   aga in   passed  
\BO I 

through  the  second 1/4 h p l a t e ,  s t i l l  o r i e n t e d   v e r t i c a l l y  i t o  produce 

"7 , which is e q u i v a l e n t   t o  OL, plus 

t t 9 0  

2 7 0  

. These  can  be summed t o   g i v e  f and 94\ , which a r e  
90 

then  passed  through  the f i r s t  114 A p l a t e ,   o r i e n t e d   a t  45  degrees ,I / 

This  produces y90 and yo which  can  be summed as "t . Thus, 

the  input  vector  has  been  operated upon to  produce an output  vector  with  the 

o r ig ina l   po la r i za t ion   bu t   de l ayed   i n   phase  by 90 degrees.  
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As t h e   o r i e n t a t i o n  of the  second 114 h p l a t e  is r o t a t e d ,   t h i s   d e l a y  

changes,  going  from  zero  to 360 degrees   delay  for   each 180  degrees of r o t a -  

t i o n .  If the  second  114 h p l a t e  is r o t a t e d  a t  a c o n s t a n t   r a t e  of 1 cycle  per 

second,   the  coherent   l ight   passing  into and  back  out of t h i s  arm  of i n t e r -  

ferometer i s  s h i f t e d   i n   f r e q u e n c y  by 2 cycles  p e r  second. It can be  shown 

tha t   t he  same device  can  produce  the same o v e r a l l   e f f e c t  when combined with 

a po la r i za t ion - sens i t i ve   e l emen t   i n   t he   i n t e r f e romete r   ou tpu t  arm. 

One ob jec t ive  of t he   p ro j ec t  was to   eva lua te   the   app ' l ica t ion  of a s o l i d -  

s t a t e   r o t a t i n g  1.14 A p l a t e   fo r   t he   f r equency   sh i f t e r .   Th i s   dev ice  is an   e lec-  

t ron ica l ly   d r iven   e lement ,   op t ica l ly   equiva len t   to  a mechanical ly   rotated 114 ... 
p l a t e .  I t  c o n s i s t s  of  a f u s e d   s i l i c a   d i s k   t h a t  i s  mechanical ly   s t ressed by 

p iezoe lec t r ic   t ransducers .   Severa l   t ransducers   a re  mounted around  the  edge 

of the   d i sk  and exc i t ed  by an ac   vo l tage .  By proper   cont ro l  of t h e   e x c i t a t i o n  

amplitude and phase, i t  i s  poss ib l e   t o   gene ra t e  a r o t a t i n g   s t r e s s  wave i n   t h e  

g lass .   This   causes  a r .otat ion of t he   b i r e f r ingence   axes   i n   t he   g l a s s .  

One of the many mechanical modes of o s c i l l a t i o n   t h a t   c a n  be e x c i t e d   i n  a 

d i s k  i s  i l l u s t r a t e d   i n   F i g u r e   1 9 ( a ) .   I f  a cyc l i c   fo rce  i s  appl ied a t  F 

v i b r a t i o n s  w i l l  occur  with  excursions  as shown by the   do t t ed   l i nes .  Because 

of the  nature  of so l id   mater ia l ,  it i s  n o t   p o s s i b l e   t o   e x c i t e  a v i b r a t i o n   i n  

one axis   only;   a l l   three  dimensions  determine  the mode c h a r a c t e r i s t i c s .  The 

des i r ed  mode has  equal x and  y dimensions,  with a smaller z dimension.  In- 

cremental  elements  on  the x  and  y axes   a r e   sub jec t   t o   r ad ia l   mo t ion   on ly ;  and 

incremental  elements on f 45" axes   a re   subjec t   to   t angent ia l   mot ion   on ly .  

Therefore, a second  independent,  or  orthogonal, mode can  be  induced  by a c y c l i c  

fo rce  a t  45" as  shown by F in   F igu re   19 (b ) .  By proper  adjustment of the 

re la t ive   phase  of F and F2, i . e . ,  by adjustment of @I = -, i t  i s  p o s s i b l e   t o  1 4 
generate  a compression  s t ress  t h a t   e f f e c t i v e l y   r o t a t e s   a b o u t   t h e  z a x i s   a t  

the  frequency w. (See  Figure 19(c) .) 

1' 

2 n: 

In  mathematical  terms,  the  birefringence i s  equal  to  (Ref.  7) 
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Figure 19. Acoustical  Resonate Modes In a Thick  Disk 
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Where : 

C = s t r e s s - o p t i c   c o e f f i c i e n t  

t I thickness  of plate  

p and  q = p r i n c i p a l  stresses 

Bt I r a t i o  of  index of r e f r a c t i o n   f o r   f a s t  and  slow axes 

By ' d e f i n i t i o n ,   t h e   p r i n c i p a l  stresses are i n  planes f r e e   f r m   s h e a r ,  a t  

r igh t   ang le s   t o   each   o the r ,  and are r e s p e c t i v e l y   t h e   g r e a t e a t  and smallest of 

a l l  normal stresses in   the   e lement   (Ref .  7).  The slow  and f a s t   o p t i c a l   b i r e -  

f r ingence axes are parallel  t o   t h e   p r i n c i p a l  stress axes, p and  q.  Since  the 

b i r e f r i n g e n c e   e f f e c t  i s  s e n s i t i v e   t o  stress magnitude and n o t   p o l a r i t y ,   t h e  

b i r e f r ingence   axes   ro t a t e  a t  the  frequency 2w. 

An experimental  model of a s o l i d - s t a t e   r o t a t i n g  1/4 h. p l a t e  was made-by 

Perkin-Elmer  pr ior   to   the start  of t h i s   p r o j e c t   ( R e f .  1). This model  had two 

shortcomings:   the   useful   aper ture  was severe ly   l imi ted ,  and  alignment  aid 

operat ion of t h e   u n i t  were v e r y   d i f f i c u l t .  A second model was made t o  so lve  

these  problems (see Figure 20). F l a t  s i d e s  were used in   the   second model t o  

g ive  a more uniform stress d i s t r i b u t i o n   o v e r   t h e  clear ape r tu re  and t o   i r o l a t e  

the two modes f o r   e a s e  of alignment.   Also,   the  force  transducers were mounted 

on the   g lass   d i sk   edge   ins tead  of on the   face   to   increase   the   aper ture .   These  

approaches were success fu l   fo r  one mode, bu t   there  was s t i l l  a s e v e r e   d i f f i -  

cul ty   with  the  second mode. 

Both o r i g i n a l  and  second models used three-phase e x c i t a t i o n ,  and i t  i o  

now be l i eved   t ha t  t h i o  accounts   for  t h  cr i t ical  alignment  problem. Work on 

this approach was s topped  af ter   the   Doppler   f requency  shif ter  was found t o  work 

success fu l ly .  

34 



ROTATING 
FUSED SILJCA BIREFRINGENCE AXIS 

HEXAGON \ 

w 
ul 

/ 
ROTATING COMPRESSION 

STRESS WAVE 

BIREFRINGENCE a F - F 
P q  

Figure 20. Experimental Sol idState   Rotat ing 114 X Plate  



4 .  ASPHERIC MEASUREMENT 

4.1  Problem  and  Approaches 

The present   concept   for   the   appl ica t ion   of  a f igu re   s enso r   i n   an   ac t ive  

opt ics   t e lescope   sys tem  requi res   the   sensor   to  measure the  primary  mirror from 

i t s  cen te r  of curva ture   ra ther   than  from the  pr ime focus.   Since  the  primary 

mi r ro r   f i gu re  w i l l  undoubtedly be o ther   than   spher ica l ,   the   f igure   sensor  m u s t  

t he re fo re  measure a sphe r i c   su r f aces  from t h e   v i c i n i t y  of   the   parax ia l   cen ter  

of   curva ture .  The  s p e c i f i c   p r o j e c t   o b j e c t i v e  was t o  measure an  8-inch, f / l  

parabola .  

Measurement  of a parabola  presents two problems: 

(1) When the  parabola  is i l luminated by a diverging  bundle   of   rays ,   a l l  

emanating  from  the  paraxial   center  of  curvature,  most  of t h e  r e t u r n  

r ays   c ros s   t he   op t i ca l   ax i s  somewhere o t h e r   t h a n   a t   t h e   p a r a x i a l  

center .   (See  Figure 21 .) T h i s  may be s t a t e d   i n   d i f f e r e n t  terms: 

Different  zones  of t h e  parabola are concent r ic   about   d i f fe ren t  

po in t s   on   t he   op t i ca l   ax i s ;   t ha t  is ,  normals t o  t h e  parabola   surface 

c ross  t h e  o p t i c a l   a x i s   a t   d i f f e r e n t   p o i n t s .  The spread  between  the 

axis   crossings  of   the   paraxial   normals  and the  edge r a y  normals may 

be   ca l l ed   l ong i tud ina l   sphe r i ca l   abe r ra t ion .   Fo r   t he   8 - inch  f / l  

parabola ,   the   longi tudina l   spher ica l   aber ra t ion  is  1 2 - 1 / 2  mm. (See 

Figure  22. ) 

(2) The opt ical   path  length from the  nominal  center  of  curvature and 

back is not  the same f o r  a l l  zones. The  approximate  difference 

between a parabola  and a sphere is  shown i n   F i g u r e  23 by a p l o t  of 

the   ax ia l   o r   z -ax is   d i sp lacement   o f  a parabola from a sphere as a 

funct ion of r a d i a l  dimension, y, i n   t h e  p u p i l  plane.  

Three  approaches were i n v e s t i g a t e d   t o   f i n d  a so lu t ion   to   these   p roblems.  

These u t  i l i z e d  : 

(1) An asphe r i c   r e f e rence   r e f l ec to r  t o  genrrate   wavefront   dietor t ions 

t h a t  match  thoee  due t o   t h e   d i f f e r e n c e  between a parabola  and a sphere 

as shown by Figure 23. 
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(2) A n u l l   c o r r e c t o r   i n   p l a c e   o f   L e n s - 1  (see Figure 2 f o r   i d e n t i f i c a t i o n )  

t o  generate   spherical   aberrat ions  matching  those  found when viewing 

a parabola from i t s  center   of   curvature ,  as descr ibed by Figure 22.  

(3)  MoirC in t e r f e rence   pa t t e rn   ana lys i s   o f   t he   i n t e r f e rence   pa t t e rn  

r e s u l t i n g   f r o m   t h e   o p t i c a l   p a t h   d i f f e r e n c e   d u e   t o   t h e   d i f f e r e n c e  

between  the tes t  parabola  and a s p h e r i c a l   r e f e r e n c e   r e f l e c t o r .  
t 

The aspheric   reference  approach is f e a s i b l e  and s imple  in   pr inciple ,   but  

t he   r e f e rence   e l emen t   i t s e l f  was found t o  be   exceed ing ly   d i f f i cu l t   t o   f ab r i ca t e .  

Two n u l l   c o r r e c t o r s  were designed,  one  with  three  elements and  one with 

fou r .  The bes t   tha t   could  be done  using  spherical   elements  only was to   reduce  

the   ove ra l l   op t i ca l   pa th   d i f f e rence   t o   app rox ima te ly  8 waves. 

The m o i r i   i n t e r f e r e n c e   p a t t e r n   a n a l y s i s  waa demonstrated to wotk  with 

plane  and  sphergcal   mirrors .   Calculat ions  indicate   that  is should   a l so  work 

well with  the  8-inch  parabola,   and  that   the  technique ir e q u a l l y   a p p l i c a b l e   t o  

much larger   mirrors . ,   Therefore   the  moir6  analysis   approach was s e l e c t e d   f o r  

the  8-inch  parabola  measurement. 

Moire' analysis  of  an  8-inch, f/l parabola   represents   the same degree 

o f   d i f f i c u l t y ,   w i t h   r e g a r d   t o   t h e  number o f   f r i nges   t ha t  m u s t  be handled,  as 

a 120-inchJ  f /2   parabola .   Therefore ,   th is  is be l ieved   to  be a v a l i d   t e s t   i n  

terms of   the   eventua l   appl ica t ion .  It should   a l so  be pointed  out   that   the  

moire   analysis  method a l so   p rovides  a s i m p l e  mechanism by which f i g u r e   e r r o r s  

i n   t h e   f i g u r e   s e n s o r   o p t i c s  may be co r rec t ed .  

The conclusion which may be drawn  from t h i s  work i s .  tha t   the   moi re   ana lys i s  

may be used i n  combination  with  the  electronic  phase  measuring  technique  to 

measure the   f igure   o f  a f a s t   pa rabo la .  

4.2 Aspheric  Reference  Reflector 

Figure 24 shows the  physical   arrangement  of  the  interferometer  with  an 

aspher ica l   re fe rence   e lement .   In   th i s   f igure   Lcns-1  images the  parabola a t  a 

plane "p" located a l i t t l e  over 20 mm t o   t h e   l e f t   o f   L e n s - 1  and a d i s t ance  

"1" from the   beamsp l i t t e r .  The r e f e r e n c e   r e f l e c t o r  i s  a l so   l oca t ed   t he  same 
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d i s t ance  "1" from  the  beamspl i t ter .  The returning  wavefront  a t  plane "p" w i l l  

contain  dis tor t ions  caused by the  parabola .  The a s p h e r i c   r e f l e c t o r  must pro- 

duce a dupl ica te   d i s tor ted   wavef ront .  The r equ i r ed   r e fe rence   r e f l ec to r   su r f ace  

contour w i l l  now be ca l cu la t ed .  

Because  Lens-1 i l l umina te s  t h e  parabola  with a spherical   wavefront,  w e  

are  concerned  only  with t h e  difference  between  the  parabola  and a sphere .  

. Furthermore, t h e  choice  of   radius   for   the  sphere is  an  independent  variable.  

For the  geometry of Figure 25 w e  may wri te   the  equat ion  of  a parabola as 

and the   equat ions   for  a c i r c l e   a s  

6 
z C - - 2 R  P ) ' R  + i @ ) 4 R  + & 6) R + . . . .  *, 

and f o r   t h e   d i f f e r e n c e  between two c i r c l e s  of d i f f e r e n t   r a d i i   a s  
n 

= - $ (%) @'R - . . . . .  

where : 

z = displacement   in  t h e  z dimension away from t h e  y ax i s  ( z  ax i s  

coincides w i t h  the   parabola   op t ica l   ax is )  

y = radial   d imension  in   the p u p i l  plane  (2ymax=parabola  diameter) 

R = parabola   paraxial   radius  of curvature  

The  equat ion  for   the  difference  between a parabola and a sphere  then becames 

1 AR 2 6 
AZ = +C - 7 (y) g) R + i @)4R + & R 

where : 

C = a constant   displacement   in   the z d i r e c t i o n  

This is  the  equat ion  used  to   prepare  Figure 23 with R = 400 mm. 
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We may d i s r ega rd  C because w e  are o n l y   i n t e r e s t e d   i n   c h a n g e s   i n   o p t i c a l  

path as a f u n c t i o n   o f   r a y   p o s i t i o n   i n   t h e  y plane.  Also i f  w e  l e t  

R = 400 mm 

- 2IR = 0.02 R 

then : 
4 6 

IAzI = 4 e)2 - 50 (‘R) - 25 @ (mm) 

This   equat ion may be   d iv ided   in to  i t s  s p h e r i c a l  and a s p h e r i c a l   p a r t s :  

2 4 

= [ 4  @ + g) + + ($1 - [51 + 2% ($1 (mm) ( 4 )  
I I 

Spherical   Par t   Aspherical   Par t  

I f   t h e   r e f e r e n c e   r e f l e c t o r  is the  same s i ze   a s   t he   i n t e r f e romete r  beam, 

the  diameter  w i l l  be  10 nun. The s p h e r i c a l   p a r t   c a n  be generated  on a mirror  

of th i s   d iameter  by a s p h e r i c a l  convex f igu re   w i th  a radius  of  curvature  of 

8 rnrn. This   par t  is e a s y   t o  make. 

The d i f f i c u l t   p a r t   t o   f a b r i c a t e  is  the  aspheric   remainder   in   equat ion ( 4 ) .  

This  is  predominantly a fou r th  power term where 

lAz1 x 50 mm 

f o r   a n   f / l   p a r a b o l a  I y I  = 1 / 4  and ( A Z ) , ~ ~  = 0 . 2  mm. R max 

Five  different   approaches were imves t iga ted   for   fabr ica t ing   the   curve  

def ined by equat ion  (5 ) ;  none were success fu l .  

Perhaps  the most i n t e re s t ing   approach  was the   a t t empt   t o   gene ra t e   t h i s  

f i g u r e  on a r e l a t i v e l y   t h i n   t a p e r e d   d i s k  and  with  the  edge  one  half as t h i c k  

a s   t h e   c e n t e r .  The d i s k  was bent away from  the  pol ishing  tool  a t  t he   cen te r  

by a i r  pressure   whi le  i t  was being  processed.  Simple  bending  of  an  edge-sup- 

po r t ed   d i sk   w i th  a uniformly  dis t r ibuted  load  produces a predominately  second 

power curve, i . e . ,  one t h a t  is c l o s e   t o  a parabola .  However, t h e   s t i f f n e s s   o f  
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a t h i n   d i s k  is p r o p o r t i o n a l   t o   t h e   t h i r d  power of i t s  thickness;   hence,   the 

tapered  thickness  was i n t e n d e d   t o   c a u s e   s i g n i f i c a n t l y  more bending a t  the  edge 

than a t  the  middle.   Figure 26 is a f r i n g e   p a t t e r n   o f   t h e  test piece  before 

processing,   showing  the  surface  to  be f l a t .   F i g u r e  27  is a f r inge   pa t t e rn   o f  

t h e  same piece a f t e r   t he   spec ia l   p rocess ing .   Th i s  shows t h e   p i e c e   t o  be curved 

and s l i g h t l y   a s t i g m a t i c .  The shape  of  the  curve, as indicated by t h i s  da ta ,  

i s  shown in   F igure   28   toge ther   wi th  a ca l cu la t ed   cu rve   fo r  a constant  thickness 

d i s k .  It can  be  seen  that   the   effect   of   tapered  thickness  was disappoint ingly 

sma l l .  

4 . 3  N u l l  Corrector 

A n u l l   c o r r e c t o r  i s  convent ional ly  a set  of   op t ica l   e lements   inser ted  

between an   a sphe r i c   r e f l ec to r  and a t e s t  dev:.ce t o  make the   re f lec tor   appear  

t o  be s p h e r i c a l .  A n u l l   c o r r e c t o r  was used s u c c e s s f u l l y   i n   t h e   f i n a l   f i g u r i n g  

of t h e  Stratoscope I1 p r i m a r y  mirror   (Ref .   8) .   Figure 22  has shown t h a t  a 

parabola viewed  from i t s  nominal  center of  curvature  has a l a rge  amount of 

s p h e r i c a l   a b e r r a t i o n .  The func t ion  of a n u l l   c o r r e c t o r  i s  to   genera te   the  

matching  spherical   aberrat ion from e i  . e r  a d iverg ing   or  a coll imated  input 

bundle.  (See  Figure 29  .) 
Two nu l l   co r rec to r   des igns  were made: one with  thr.ee  elements and  one 

w i t h  four  elements.  Only s p h e r i c a l   s u r f a c e s  were considered.  Figure 30 shows 

the   ca l cu la t ed   ove ra l l   op t i ca l  p a t h  d i f f e r e n c e  when the   nu l l   co r rec to r s  were 

mated wi th   t he   8 - inch   f / l   pa rabo la .   I f   an   8 - inch   pa rabo la  were t h e  l a r g e s t  

r e f l e c t o r   t o  be tes ted,   these  designs  could be corrected by use of  aspheric 

s u r f a c e s .  However, the  magni tude  of   longi tudinal   spherical   aberrat ion  increases  

l i nea r ly   w i th  t h e  pr imary  mirror   s ize .   This  means tha t   t he   12  nun of   aberrat ion 

could become as la rge   as   180  nun f o r  a very   l a rge   mir ror ;   wi th   the  r e s u l t  t h a t  

the   nu l l   cor rec tor   e lements  would become q u i t e   l a r g e  and  involve a l o t   o f  

g lass   in   t ransmiss ion .  

Although  the  null   corrector  approach is  c e r t a i n l y   f e a s i b l e ,  i t  was p u t  

as ide  in   favor   of   the   moire   pat tern  analysis ,   which  requires   fewer   opt ical  , 

e lemen t s   i n   t he   i n t e r f e rence  beams. This was not a compelling  decision and 

the  use  of a nul l   cor rec tor   should   cont inue   to  be cons ide red   i n   t he   fu tu re .  
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Figure 2 6 .  Fringe  Pattern  of  Experimental   Reference  Reflector 
Blank  Before  Processing 

Figure 2 7 .  Fringe  Pattern  of  Experimental   Reference  Reflector 
Af te r   Process ing  
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Figure 30. Calculated  Optical Path Difference  for Two Different 
Null  Correctors Used  With the f / l  Parabola 
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4 . 4  Moire/ Pa t t e rn   Ana lys i s  

Moire/ p a t t e r n s  are well known, and many techniques  employing them  have 

been  long  es tabl ished  (Refs .  3, 9 ) .  Moire/ pa t t e rns  are usually  produced by 

the   supe rpos i t i on   o f  two g r i d s   o r   l i n e   p a t t e r n s .   I f  one l i n e   p a t t e r n  is  an  

i n t e r f e r o g r a m   r e p r e s e n t a t i v e   o f   a n   o p t i c a l   s u r f a c e  and the   o the r   an   i dea l  

mas te r   pa t t e rn ,   t he   r e su l t an t  moire' p a t t e r n  is  a l so   r ep resen ta t ive   o f   t he  

devia t ion   of   the   op t ica l   sur face   f rom  the   idea l   des ign .   In  many cases, complex 

in te r fe rogram  pa t te rns   can  be more e a s i l y   i n t e r p r e t e d  by moirg   pa t te rn   ana lys i s .  

The  work pe r fo rmed   fo r   t h i s   p ro j ec t   r e su l t ed   i n   t he   success fu l  combina- 

t i on   o f  moire/ pat tern  analysis   with  the  automatic   phase  measuring  technique ' .  

The advantages  of   this   approach  include:   use  of   s impler   opt ics   in   the  inter-  

fe rence  beam paths ,   tes t ing  of   aspheric   e lements ,   and  cancel l ing  out   of   f igure 

e r ro r s   i n   t he   i n t e r f e romete r   componen t s .  

Figure 7 i n   S e c t i o n  2 has shown the  arrangement  of  optical  components 

for   th i s   approach .   For   s impl ic i ty ,  t h i s  i l l u s t r a t i o n  was prepared w i t h  a l i n e  

gr id   ins tead   of  a c i r c u l a r   r e f e r e n c e   p a t t e r n .  The in te r fe rometer   f r inge   pa t te rn  

was obtained  with two plane  mirrors,  one  of  which w a s  s l . i g h t l y   t i l t e d   t o   p r o -  

duce  the  desired  f r inge  f requency.   The  moire   pat tern i s  the  two-dimensional 

product   o f   the   f r inge   pa t te rn   wi th  a 100-l ine-per- inch  Ronchi   rul ing.  

Figure 31 shows a s i m i l a r  s e t  of   in te r fe rence  and  moire  patterns.  How- 

eve r ,   i n   t h i s   cabe ,  one  mirror   has   been  t ranslated  axial ly  i n  s t eps  by  means 

o f   t he   p i ezoe lec t r i c   t r ansduce r .  It  can be seen   t ha t   t he   f r inges  seem t o  

"walk" u p  t h e  page a s  vo l tage  is  app l i ed   t o   t he   t r ansduce r .   Ac tua l ly   t he  

p a t t e r n  i s  changing  phase  as a funct ion  of   t ransducer   vol tage,  and hence as 

a func t ion   o f   r e f e rence   r e f l ec to r   ax i a l   pos i t i on .  Thus, moire'patterns  can 

be  used  with  the  phase  measuring  technique.  Overall   f igure  sensor  calibrations 

similar t o   F i g u r e  18 were a l so   ob ta ined   us ing   moi rd   pa t te rn   ana lys i s .  

A val id   demonstrat ion  of   the  moirk  f r inge  analysis   technique  appl ied 

t o   t h e  measurement of an  aspheric  element  should  be  done  with a re ference  

master f r inge   pa t t e rn   wh ich  has  been made f rom  the   theore t ica l   des ign  

f igure  of   the   parabola ,   and  with  the  moird  pat tern  obtained by  a superpos i t ion  

o f   t he   ac tua l   f r i nge   pa t t e rn  upon t h e   s y n t h e t i c   r e f e r e n c e  master. 
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Figure 31. 
, 

Moire  Fringe  Pattern vs 
Axial  Position of Reference  Reflector 
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The computat ion  of   the  reference master f o r   t h e   8 - i n c h   f / l   p a r a b o l a  i s  

based  upon the  geometry shown i n   F i g u r e   3 2 .   I n   t h i s   f i g u r e   t h e  two i n t e r -  

fe rence  beams superimposed,  only  the  edge  ray i s  shown, and the   fo ld ing   due  

t o   t h e   b e a m s p l i t t e r  is omit ted.  The poin t  "C" i s  the  focal  po.int   of  Lens-1 

and r ep resen t s   t he   po in t   sou rce   o f   t he   i n t e r f e romete r   i l l umina t ion   bund le .  

The i n t e r f e r e n c e   p a t t e r n  w i l l  be  caused by t h e   o p t i c a l   p a t h   d i f f e r e n c e ,  OPD, 

which is  def ined by: 

CDE - CAC) - ( C W  - CBC) 
'. 

OPD = ( h 

This  OPD w i l l  vary  as a funct ion  of  0, the   ray   e leva t ion   angle   above  t h e  

o p t i c a l   a x i s .  

The c a l c u l a t i o n  i s  complicated by the   add i t iona l   sphe r i ca l   abe r ra t ion  

due t o  t h e  beamsplit ter  cube. A comparison was  ma?e between t h i s  component 

o f   sphe r i ca l   abe r ra t ion   fo r   t he  two beams;  one t o   t h e   s p h e r i c a l   r e f l e c t o r  

and one to   the  parabola ,   each  passing  through  the  beamspl i t ter   cube.  The 

difference  between  the two was found t o  be approximately 0.25h for   the  edge 

r ay .  A s l i g h t  amount of   defocusing  could,   in   pr inciple ,   reduce  to  less than 

h/20 the  maximum difference  between  the two beams due t o   t h e   a b e r r a t i o n .  

Therefore, i t  wa5 dec ided   t o   pe r fo rm  the   f i r s t   c a l cu la t ion   neg lec t ing   t he  

beamsp l i t t e r   g l a s s .  A f i na l   ca l cu la t ion   ( fo r   t he   des ign   o f  a "working model" 

f igu re   s enso r )  w i l l  include a complete  ray  trace  from  point "C" t o   t he   ou tpu t  

f r inge   p lane .  

A program was worked out  for  the  Hewlett-Packard Model  9100A Calcula tor  

based upon the  geometry  of   Figure  33.and  the  fol lowing  equat ions:  

- ( 11 + 2 (1 + 6) tan2 - 1) 
y1 - t a n  0 

1 (yJ2 sag  = - 
2 R  

1 g 
41 = ( l + b R - s a  cos e 
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Figure 32 .  Geometry for   Der iva t ion  of Moire/ Reference  Master 



Parabola 

Figure 33. Geometry for Calculating OH) of a Parabola When 
Viewed from its  Nominal Center of Curvature 



marginal  path = 2 L1 

pa rax ia l   pa th  = 2 r l  + b ) R  

OPD = 
(marginal  path) - barax ia l  path1 

h 

where : 

d =  = f rac t iona l   d i sp lacement   o f   parabola   parax ia l   focus  from 

po in t  "C", the  focus  of  Lens-1 

8 = r ay   e l eva t ion   ang le  

y = dis tance   above   the   op t ica l   ax is   o f   the   ray   in te rcept  w i t h  

the  parabola  

R = parax ia l   r ad ius  of curvature  of  parabola 

OPD = op t i ca l   pa th   d i f f e rence   i n   un i t s   o f   wave leng th  

No t i ce   t ha t   t he   i n se r t   i n   t he   l e f t -hand   co rne r   o f   F igu re  6 c l a r i f i e s  t h e  

difference  between  the  axial   d isplacement   of   the   parabola  from a sphere, Az, 

and t h e   o p t i c a l   p a t h   l e n g t h   d i f f e r e n c e ,  A path,  between  the two for   d ivergent  

i l l umina t ion .  When 6 = 0, the  parabola   paraxial   focus  coincides   with  the 

focus  point of  Lens-1. 

Values of OPD were ca l cu la t ed  as a funct ion of 8 €or several   values   of  d 
and f o r  R = 400 mm. These are p l o t t e d   i n   F i g u r e  3 4  where values of 8 have 

been  normalized to :  

Ray Pos i t  ion t a n  8 
0.25 

The calculator   program was then  reorganized  to   solve  for   ray  posi t ions 

f o r   i n t e g r a l  number values  of OPD. These  posi t ions  then  represented  the 

no rma l i zed   pos i t i ons   fo r   cons t ruc t ive   i n t e r f e rence   i n   t he   f r inge   pa t t e rn .  

For  ray  posit ions  between 0.20 and 0.93, t he   pos i t i on r  of 200 f r ingae  were 

computed.  These da t a   t hen  formed the  basis   of  a procurement   specif icat ion 

f o r  a r e fe rence  master f o r   t e s t i n g   t h e   f / l   p a r a b o l a .  A copy  of t h i s   r p e c i f i -  

c a t i o n  is  con ta ined   i n  Appendix A. 
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Figure34.  Calculated  Optical  Path  Difference  between a Parabola and a 
Sphere When Viewed from t h e  Nominal Center  of  Curvature. 
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A re ference   pa t te rn  was purchased  from  the Qua l i  tron  Corp. of Danbury, 

Connect icut .   Figure  8(a)   in   the sumnary i s  an  enlargement  from t h i s  master. 

Figure  8(b) i s  an a c t u a l   f r i n g e   p a t t e r n  made with  an f j l ,  8-inch  parabola  and 

an f / l  s p h e r i c a l   r e f e r e n c e   r e f l e c t o r   i n   t h e  two interferometer  arms.  Figures 

8(c)  and 8(d) show the moire' pa t te rn   ob ta ined  by mul t ip ly ing   the   ac tua l   f r inge  

pa t t e rn   w i th   t he   ca l cu la t ed   pa t t e rn .   F igu re   8 (c )  was made with optimum a l i g n -  

ment of t he   pa t t e rns .  It  shows approximately  four  fr inges of sphe r i ca l   abe r ra -  

t i o n  and  one  and  one h a l f   f r i n g e  of astigmatism.  This i s  a t t r i b u t e d   t o   d i s t o r -  

t i o n s   i n   t h e   f i e l d   l e n s  which  were no t   cons ide red   i n   t he   ca l cu la t ions .   F igu re  

8(d) was  made w i t h   t h e   r e f e r e n c e   m i r r o r   t i l t e d   s l i g h t l y .  A p e r f e c t   o p t i c a l  

system would  have  produced s t r a i g h t   l i n e s .  The s p h e r i c a l   e r r o r s   a r e   e a s i e r  

t o   i d e n t i f y   i n   t h i s   f i g u r e .  
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5. SECONDARY  ALIGNMENT 

A s h o r t   s t u d y  was conducted t o   d e t e r m i n e   t h e   f e a s i b i l i t y   o f   u s i n g   t h e  

primary  mirror  f igure  sensor  to  measure  the  secondary  alignment  also.  The 

s t u d y   r e s u l t s  show t h a t   c o n c e p t u a l l y   t h i s   c a n  be  done w i t h   s u f f i c i e n t   s e n s i -  

t i v i t y ;   b u t   f u r t h e r   i n v e s t i g a t i o n  is  r e q u i r e d   t o   d e t e r m i n e   i f   t h e   a d d i t i o n a l  

o p t i c a l  components  can  be made wi th   t he   r equ i r ed   p rec i s ion .  

The fundamental  primary-to-secondary  alignment  requirement  can be e a s i l y  

v i s u a l i z e d   i f  w e  draw a s imple   p ic ture   o f  a Gregorian  telescope.(See  Figure 35.) 

For a remote  on-axis  source,   the  paraboloid  primary w i l l  form a sphe r i ca l  wave- 

front  converging  on i t s  prime  focus  point. The e l l ipso id   secondary  w i l l ,  by 

d e f i n i t i o n ,   r e l a y  a point   source a t  one  focus t o  i t s  second  focal  point.  Hence 

the  fundamental  aligpment  requirement is  that   the   pr imary  focus  coincide  with 

one  secondary  focus  (Ref. 11). It was shown during  the  Stratoscope I1 develop- 

ment t ha t   o the r   f ac to r s   a r e   o f  less consequence  than  this  requirement.   This 

c r i t e r i o n   a p p l i e s   e q u a l l y  w e l l  t o  a Cassegrain  te lescope.  

Figure 3 6  shows the  opt ical   arrangement   for   performing  both  pr imary and 

secondary  alignment  measurements. An extra  element,  Lens-2,  has  been  added 

t o  make the   cen t r a l   po r t ion   o f   t he   i n t e r f e romete r  beam converge a t   t he   p r imary  

p r i m e  focus.  Also a spherical   surface  has   been  added  to   the  back  of   the 

secondary  mirror .   This   surface i s  made concentric  about  the  prime  focus.  The 

f igure   sensor   then  measures a x i a l  and la te ra l   d i sp lacements   o f  t h e  sphe r i ca l  

su r f ace   cen te r   o f   cu rva tu re   r e l a t ive   t o   t he   p r ime   focus   po in t .  

The equat ions  used  to   es tabl ish  secondary  a l ignment   tolerances  are   as  

following  (Ref.   12) : 
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Figure 35. Geometry of  Primary-Secondary  Alignment Showing Coincidence of  
primary  Prime  Focus and Secondary  Foci  for a Gregorian Tele- 
scope  Sys tern 





1111IIIIIII I 

where : 

ba = axia l   misa l ignment   to le rance  

bR = €atera1 misalignment  tolerance 

h/n = peak  wavefront  error  permitted 

K = constant  

A value  of n = 10 was used. T h i s  r e su l t s  i n  a S t r e h l   r a t i o  of 97 pe rcen t .  

The  f a c t o r  K accoun t s   fo r   t he   f ac t   t ha t  a major  portion of t he   ax ia l   focus  

e r r o r  w i l l  be compensated  for by a focal   adjustment   a t   the   instrument   focal  

p lane .  P ..ralue of K = 100 was used. The following  numerical  values were 

used  fc.r  the  compu’ratiJn of secondary  alignment  tolerances! 

P r  I mary Mirror f11.5; f . l .  = 150  inches 

Secmdary  Mirror  20% obscurat ion 

Interferometer  Beam 3 inch  diameter 

La ter i  1 Alignment  Tolerance ? O  .OOO4 inch 

Axial A1 ignment Tolerance k0.005  inch 

Ca lcu la t ions   i nd ica t e   t ha t  a l a t e r a l  m’salignment  of 0 .0004  inch  causes 

approximately h / 3  of r e l a t i v e  t i l t  across   the  tes t  beam of   the   in te r fe rometer .  

This i s  eas i ly  de t ec t ed .  Axial misalignment  of 0.005 inch  causes a wavefront 

change in   the   in te r fe rometer   o f  h/50. This is jusl: abou t   a t   t he  limit of 

s ens i t i v i ty   a s   de t e rmined  by a v a i l a b l e   s i g n a l - t o - n o i s e   r a t i o .  

The combination  of  Lens-2 and Lens-1  actually  forms a measuring arm which 

l o c a t e s  a spo t  a t  t he  pr ime focus   r e l a t ive   t o   t he   cen te r   o f   cu rva tu re   o f  t h e  

p r i m a r y .  Small  ckanges i n   e i t h e r   l e n s   c h a r a c t e r i s t i c   o r   l o c a t i o n  w i l l  produce 

l a rge   changes   i n   t he   pos i t i on   o f   t h i s   spo t .   Fo r  example: The spacing between 

Lens-1  anu  Lens-2 mus t  be maintained  to  f2 microinches  over a d i s tance   o f  

approximately 6 inches, and the  angular  al ignment  of  the  lens p a i r  must  be 

co r rec t   t o   w i th in   approx ima te ly  f 112  arc-second.  Previous  experience  indicates 

t h a t  these dimensional  tolerances  can  be mat during  manufacture  for a s p e c i f i c  

se t  of  environmental   conditions.  Whether or  not  they  can be maintained  in  a 

spaceborne  telescope  depends upon how  much of   an  environmental   var ia t ion must  

be to l e ra t ed ,   e spec ia l ly   w i th  rega-d t o  the  spac ing   to le rance .  
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6 .  IWERFEROMETER 

In the  course  of  performing  the  work  described in the  previous  sections, 
it was  necessary  to  conaider  the  optimum  configuration  for  the  interferometer. 
Earlier  work  had  been  done with  a  Twyman-Green  interferometer  having  a  simple 
plate  beamsplitter.  It soon  became  apparent  that  a  cube  beamsplitter  would 
be  best  to  minimize distortion  due to  the  spherical  wavefront  passing  through 
the  beamsplitter. Also, because  of  its  symmetry,  the  cube  to  a  large  extent 
compensates  effects of spherical  aberration in the  two  beam  paths. Two different 

cube  beamsplitters  were  evaluated: on. using an Inconel semi-reflecting  surface, 
and a  second  using  a  recently  developed  polarization  sensitive  semi-reflector. 

The  Twyman-Green  interferometer  with  Lens-1 in one  beam  path  results in 
more  optical  surfaces  lithin  the  optical  interference  paths  than  might  be de- 
sired  for  best  accuracy.  Therefore,  the  recommended  design  is  a  modification 
that  places  Lens-1  between  the  laser  and  beamsplitter so that  only  the  beam- 
splitter,  reference  reflector,  and  element  under  test  contribute  to  the  inter- 
ference  effects.  This  arrangement  is  described in this  section. 

6.1 Polarization  Interferometer 

The use  of a  polarizing  beamsplitter  was  investigated  for  use in the  inter- 
ferometer.  It  was  found  to  work  well,  but  is  not  recommended  for  this  applica- 
tion  because  of  the  complexity  of  the  additional  optical  elements  required. 
Nevertheless  the  following will  describe its  use. 

The  key  element of  the  polarization  interferometer  is  a  device  called  a 
polarizing  beamaplitter,  recently  invented  at  Perkin-Elmer. In the  polarizing 
beamsplitter,  the  metallic  Inconel  film  of  conventional  beamsplitters is  re- 
placed with  a  multilayer  dielectric  stack,  that  is  arranged  for  the  light  of  one 
polarization  to  be  transmitted,  while  light of the  opposite  polarization  is  re- 
flected.  Because  the  layers  are  made of dielectric  material,  the  losses  are 
negligible. 

Figure 37 shows an interferometer  that  utilizer  a  polarizing  baamaplitter. 
The  polarization  seneitive  layer  is  arrangad to transmit  light  polarized with 
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Figure 3 7 .  T w p r l r G t e c n   E n t c r f e r d t e r  Uaing A P o l i r i z i n g   B e m p l i t t e r  
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t h e  E v e c t o r   p a r a l l e l   t o   t h e   p l a n e  of the  paper, E and t o   r e f l e c t   l i g h t  

polarized  normal  to  the  paper,  Es. The laser is or ien ted   wi th  i t s  p o l a r i z a t i o n  

plane a t  45  degrees so  t h a t   e q u a l  components are t r ansmi t t ed  and r e f l e c t e d  

on the   f i r s t   pas s   t h rough   t he   beamsp l i t t e r .  Each arm contains  a 114 h p l a t e ,  

which  converts  the beams i n t o   c i r c u l a r l y  polarized l i g h t .  Each beam i s  then 

r e f l e c t e d  by a mi r ro r  and  passed  back  through the 114 h p la t e .  The ne t  result  

is a 90-degree  change i n   t h e   p o l a r i z a t i o n   o f   t h e   l i g h t   i n   e a c h  arm. This 

means t h a t  a l l  l i g h t   i n c i d e n t  upon the   input  arm of   the  beamspl i t ter  emerges 

from the  output  arm only .  

P’ 

I 

In   the   ou tput  arm, t h e  two beams are polar ized a t  r igh t   ang le s   t o   each  

o the r  and no in t e fe rence   t akes   p l ace .  However, i n t e r f e rence   f r inges   can  be 

generated by placing a 114 A p l a t e  and a po la r i za t ion   ana lyze r   i n   t he   ou tpu t  

arm. The r eason   fo r   t h i s  may be v i sua l i zed  by r e f e r r i n g   t o   F i g u r e  38 .  The 

114 h p l a t e   i n   t h e   o u t p u t  i s  o r i e n t e d  so t h a t  i t  changes  each  output beam 
i n t o   c i r c u l a r l y   p o l a r i z e d   l i g h t ,  one  left-hand  and one right-hand. The f i g u r e  

i l l u s t r a t e s  t h a t  t h e  vec tor   addi t ion   o f  two counter ro ta t ing   vec tors  of equal 

amplitude  produces a r e su l t an t   vec to r ,  ER, which  changes in   ampli tude  but  i s  

f i x e d   i n   p o l a r i z a t i o n .  The o r i e n t a t i o n   o f  E is determined by t h e  r e l a t i v e  

phase of the  two ro t a t ing   vec to r s .   Re fe r r ing   aga in   t o   F igu re  37,  no te   t ha t  a 

change in   the   l ength   o f   e i ther   in te r fe rometer  arm changes t h e  phase  between  the 

two ou tpu t   vec to r s ,   r e su l t i ng   i n   angu la r   ro t a t ion  of the   p lane   o r   po lar iza t ion  

of t h e  r e su l t an t   vec to r  E by an  angle  equal to half   the  phase  angle  change. 

Transmit t ing  the  resul tant   vector   through a polar iza t ion   ana lyzer  w i l l  produce 

a n   i n t e n s i t y   r e l a t e d   t o   t h e   r e l a t i v e   o r i e n t a t i o n   o f  E and t h e  analyzer .  The 

r e s u l t i n g   i n t e r f e r e n c e   p a t t e r n  i s  equiva len t   to   the   in tens i ty   pa t te rn   ob ta ined  

with  an  interferometer   using a convent iona l   beamspl i t te r .  

R 

R 

R 

The polar iz ing   in te r fe rometer  i s  no more e f f i c i e n t   t h a n   t h e   i d e a l   i n t e r -  

ferometer  with a lo s s l e s s   beamsp l i t t e r ,   s ince   ha l f   o f   t he   l i gh t  i s  absorbed  in 

t h e   p o l a r i z a t i o n   a n a l y z e r .  However,  by using a second  polar iz ing  beamspl i t ter  

in   p lace   o f   the   ana lyzer ,  i t  i s  poss ib l e   t o  have two sets of   detectors   with 

t h e  r e s u l t  that   over  95  percent  of  the laser output may be used as compared t o  

only 50 percent   for   the  convent ional   interferometer   with a d i e l e c t r i c  beam- 

s p l i t t e r .  
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Figure 38. Vector  Representation  of  the Summation of  Right- 
hand  and Left-hand  Circularly  Polarized  Light  
for  Two Different  Relative  Phases  Between The 
Two Inputs 
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6.2 Opt ica l  Arrangement 

The Twyman-Green in te r fe rometer   requi res   tha t   Lens-1  be i n  one  of t h e  

beams. T h i s   r e s u l t s  i n  s i x  extra surfaces,   each  traversed twice, wi th in   the  

in t e r f e rence   pa th .  It would  be des i r ab le   t o   e l imina te   t hese .   Lens -1   a l so  

cont r ibu tes   addi t iona l   spher ica l   aber ra t ion   which  m u s t  be inc luded   in   the  

moire' r e f e rence  master. I t  was therefore   dec ided   to  move Lens-1 t o   t h e   i n t e r -  

ferometer  input arm. 

Figure 39 shows t h e  recomnended optical   arrangement  for  the  interferorn- 

e t e r .  Drawings fo r   t he   key   op t i ca l  components i n  t h i s  assembly  are  contained 

i n  Appendix B. Figure 40 shows the  r'ecommended overal l   b lock  diagram  for  

a "working model" of t h e  Advanced Figure  Sensor. 
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F i g u r e  4 0 .  Advanced  Figure  Sensor Block Diagram 
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CODE IDENT. 

46555 
PERKIN-ELMER 

~LICTIKIOCTICAL mvmIoN. -WALK. CSNN. 
DATE: I ~ / I o / ~  f 

lUSW%&E MASTER - 
1.0 P a t t e r n   D e s c r i p t i o n  

200 C o n c e n t r i c  c i rc les  or r i n g s ,   a l t e r n a t e l y   o p a q u e   a n d   t r a n s p a r e n t ,   w h e r e  
t h e   d a r k   r i n g   r a d i i  are d e f i n e d  by a n   e q u a t i o n  of t h e  form 

a r 2 t  b r 4 t  C r 6  : n  

Where: n = r i n g   n u m b e r  
r = r i n g   r a d i u s  
a ,  b a n d  c are c o n s t a n t s  

S e e   f i g u r e  1 for a p p r o x i m a t e   p a t t e r n  

2 .0  P a t t e r n  Data 

2 . 1  C i r c l e   R a d i i :   S e e   T a b l e  I f o r   r e l a t i v e   v a l u e s  of c i r z l e   r a d i i  
a n d   t h i c k n e s s   n o r m a l i z e d   t o   a n   o u t e r   c i r c l e   r a d i u s  
of e x a c t l y  1.0 

‘2.2 P a t t e r n   S i z e :  Absolu te  r a d i u s  of o u t e r c i r c l e   ( r i n g   n u m b e r  2 0 0 )  

3.0 h s s u r a c y  

3.1 Resoiur i o n  : r e s p o n s e  

r e s p o n s e  

3 . 2   C i r L l e   R a d i i  

1 . 3  C i r c l e   C o n c e n t r i c i t y  : 

3 . 4  C i r c l e   T h i c k n e s s :  

2 .5  P a t t e r n   S c a l e :  

4.0 S u b s t r a t e  

i .1 M a t e r , i a l :  

4.; S i z e :  

4 . 3  T h i c k n e s s  : 

4 . 4  F l a t n e s s  : 

95% at  56 lir~es/mm 

75% a t  E O  l ines /mm 

t 0.00005 i n c h  

t 0.00005 i n c h  

- 
- 

- t 5% 

O u t e r  c i r c l e   r a d i u s  = 

g l a s s  or e q u i v a l e n t  

2 x 2 i n c h 2  

0.060 i n c h  

+ 0 . 0 0 1  i n c h  - 

- t 0 .002  i n c h e s  

CRANE PE SPEC SHEET REV 

APPROVED A - 1 6 3 5  
~. . 
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A s  s emb l ies  

64 9 

Details 

649 

Copies of Drawinua 

0004 f/2  objective assembly 

0005 Parabola mount 

0006 Doppler mount 

1002 f / 1  Parabola 

1005 Lens - 1 Design 

1008 Spherical  Reflector 

1014 Beamsplitter 
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REMARKS: EFL I 20.00 
BFL I 10.43 
RMS OPD I .017X (3 6328A 

'rThe f igure  tolerance i s  based on optimum performance  without  aspherizing; 

t4 
i t  may be relaxed and the  system  corrected  at  surface #1. 
The lens  w i l l  perform i f  index  variat ion i s  l e s s  than k.001 from  catalogue 
and a l l  of one mel t .  
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